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We present an accurate diffusion Monte Carlo computation of the ground state of a two-dimensional electron
gas laterally confined by a harmonic potential in the effective mass-dielectric constant approximation. The
computation is made explicitly including the second dimension, and can therefore address the occurrence of
phase transitions in the system. The system was studied as a function of the one-dimensional Wigner-Seitz
parameter rs=1 /2�1D in the range 0.5�rs�7. The ground state is found to be spin polarized for rs�3.
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I. INTRODUCTION

The two-dimensional �2D� electron gas laterally confined
by some potential is an important model in many-body phys-
ics, since the progress in nanostructure technology has al-
lowed the fabrication of quasi-2D quantum stripes. Experi-
ments performed on these nanostructures have pointed out
the quantization of the conductance G in units of 2e2 /h,
which reflects the number of active channels in the transport
measurements.1–3 An anomalous conductance structure close
to G=0.7�2e2 /h� has been observed in many cases.4–9 This
structure has given rise to many interpretations based on
spontaneous spin polarization of the system mediated
through the exchange-correlation interaction,10–15 on possible
manifestation of a Kondo effect,16–18 or of Wigner crystalli-
zation of the confined electron gas at low density,19 or of a
Tomonaga-Luttinger liquid behavior.20–29 All these results
are based on specific models or approximations such as, for
example, the local spin-density functional theory.

In this paper we address the problem by computing the
ground state energy of a 2D-quantum stripe of infinite length
and finite width by means of accurate fixed–node diffusion
Monte Carlo �DMC� simulations. The stripe is described by a
two-dimensional Hamiltonian of N interacting electrons lat-
erally confined by a parabolic potential. The extension of the
stripe in the third dimension is neglected, as in most theoret-
ical descriptions. Within DMC, it is possible to calculate the
ground state energy for the unpolarized and fully spin-
polarized liquid and crystal phase. This enables us to deter-
mine, by comparing the energies, the density at which the
electron gas in the stripe polarizes. Previous Monte Carlo
calculations of quasiunidimensional systems have been per-
formed by Casula et al.30 The authors in that case considered
a one-dimensional system with an interaction that effectively
includes the width of the wire. However, the Hamiltonian
being one-dimensional, no phase transitions can occur in the
system, according to the Lieb-Mattis theorem.31 Our calcu-
lation being fully two-dimensional, makes it possible to dis-
cuss relative stability of phases with different symmetry.

II. MODEL HAMILTONIAN

In order to determine the Hamiltonian of the system we
start from a 2D electron gas of density �2D=1 /�a2 in the
effective mass-dielectric constant approximations. In this pa-

per we will consider effective units �=e2 /�=mem
�=1. The

density of the gas is parametrized by the effective Wigner-
Seitz radius in effective atomic units rs

2D=a /a0
�. For reasons

of convenience, in the simulations we prefer to rescale all
length in terms of a one-dimensional Wigner-Seitz parameter
rs=L /2N where N is the number of electrons, and L is the
length of the wire, which by this scaling depends only on the
number of electrons, and not on the density. The one- and
two-dimensional densities are related to each other as �1D

=�2Dw��1D�, where w is an estimate of the width of the wire.
A possible definition of w�rs� is given by twice the distance
from the center of the wire at which the transverse density
decays to one half of the value at the center. Similarly we can
relate rs

2D and rs as rs
2D��2rsw�rs� /�. With this choice of

the length units, energies are given in effective Rydbergs.
The Hamiltonian of the N electrons in the stripe is then de-
fined as follows:

H = −
1

rs
2�
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�i
2 + �
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N

�̂0
2yi

2 +
2
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�
i�j

N
1

�ri − rj�
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The harmonic confinement parameter �̂0=�0rs is scaled con-
sistently with the coordinates. Note that for independent
electrons this choice of the confinement would give a width
of the wire w�rs�	1 /rs, therefore corresponding to maintain-
ing constant the two-dimensional density. The infinite exten-
sion along the x direction is accounted for by using a modi-
fied version of the Ewald summation. The assumption is that
the diverging Coulomb repulsion is compensated by the in-
teraction with a jellium of positive charge. We then consider
a 2D array of such stripes in the limit of infinite separation.
Part of the resulting potential must be computed numerically
at the beginning of the simulation.

III. COMPUTATIONAL METHODS

The computation follows the standard procedure for quan-
tum Monte Carlo �QMC� calculations, using a modified ver-
sion of CHAMP.32 The first stage consists of minimizing the
expectation of the Hamiltonian over a trial state of the
following form:

PHYSICAL REVIEW B 79, 155321 �2009�

1098-0121/2009/79�15�/155321�5� ©2009 The American Physical Society155321-1

http://dx.doi.org/10.1103/PhysRevB.79.155321



T�r1 . . . rN� = �
i=1

N

u�yi��
i�j

N

f�rij�Det↑ ���r�Det↓ ���r� .

�2�

The Jastrow factor f�rij� is a simplified version of the form
used in Ref. 33. The one-body factor u�y�=exp�−c1y2� is a
Gaussian which is used to give an overall correction to the
lateral width of the wave function. The single-particle func-
tions are solutions of the noninteracting Hamiltonian, and
can be written as

���r� = 
ho
l �y���x� , �3�

where 
ho
l �y� are eigenstates of the harmonic oscillator of

frequency �̂0�. The single-particle functions ��x� can be cho-
sen to enforce the symmetry of the state considered. For
simulating the liquid phase, either polarized or unpolarized,
we use ��x�=exp�−ikx�. The momentum k is consistent with
the periodicity of the system: k= �n2� /L, with n integer.
Note that the energy levels of the noninteracting system
show a band structure given by �lk= �̂0�l+1 /2�+k2 /2m,
where l plays the role of the band index. The number Nb of
harmonic-oscillator bands filled depends on the density of
the system, and must be determined from the Fermi energy
of the N particles. In the simulations we assumed that the
filling of the bands is the same for the interacting and non-
interacting electrons. We checked this assumption by com-
puting the DMC energy for different fillings of the bands,
always obtaining the lowest energy for the filling predicted
for independent electrons. In order to study the occurrence of
a localized phase we implemented another set of single-
particle orbitals,

���r� = exp�− ��̂0� + c�y2	exp�− c�x − xj�2	 , �4�

where xj are the localization centers located at y=0 and dis-
tanced by L /N. Because we are considering an antisymme-
trized product of such orbitals, this choice does not automati-
cally correspond to constraining an electron around a given
lattice site. If the orbitals are overlapping with each other an
exchange of electrons is always possible.

The Jastrow parameters appearing in the wave function
are optimized following the procedure of Refs. 34 and 35.
The c, c1, and �̂0� are optimized independently. The ground
state energy is computed by means of the diffusion Monte
Carlo algorithm, in which a population of walkers is evolved
in imaginary time according to the Hamiltonian of the sys-
tem. Some details on the specific implementation of the al-
gorithm can be found in Ref. 36.

IV. RESULTS

Simulations have been performed using different numbers
of electrons and at different values of the density, param-
etrized by the Wigner-Seitz radius rs. We thoroughly studied
finite-size errors that might come from the use of Ewald
sums for the potential energy. In order to minimize such
errors we chose a rather large number of electrons for our
simulations, namely, N=74 and N=98. At given density,
therefore for a given filling of the harmonic-oscillator bands,

the consecutive filling of plane-wave shells in the one-
dimensional Fermi gas gives rise to a monotonic growth of
the kinetic energy, contrarily to what happens in two- and
three-dimension. It is possible to observe how this behavior
is preserved in the case of the interacting confined system.
Test calculations performed with larger numbers of electrons
show that the energy differences for numbers of electrons
�98 is further decreased, and almost always of the order of
the errorbar. This fact allows us to consider the results with
N=98 essentially converged. The reported energies for
smaller size systems can give a sense of the speed and of the
order of convergence.

The confinement parameter has been chosen to be ��0
=4 meV=0.674 Ry�, which is representative of typical val-
ues used in transport experiments �see e.g., the discussion in
Ref. 5�. The relevant parameter determining the properties of
the wire is the ratio between the gap in the single-particle
levels in the harmonic confining potential, and the Fermi
energy of the electrons in the longitudinal direction CF
=2m��0 /�2kF

2 �Ref. 37�, which in effective atomic units re-
duces to 32rs

2�0 /�2. Therefore, at least in the strongly one-
dimensional regime CF�1, the results should approximately
be independent of the specific value of �0 and scale as CF.
However, this is not true at high densities, where more than
one harmonic-oscillator band is occupied.

In Table I we report the energy per electron computed
with N=74 and 98 electrons at different values of rs. The
values were computed by using the plane-waves and local-
ized wave function, both for a fully spin-polarized system
and for a spin-unpolarized system, in an antiferromagnetic
configuration. For the unpolarized liquid phase the number
of h.o. bands used in the wave functions is three for rs=0.5,
and one for rs�1, while for the polarized liquid phase we fill
five bands for rs=0.5, two for rs=1, and one for rs�1. In the
localized phase we consider localized orbitals, and we as-
sume that the correct density is reached by varying the pa-
rameters of the Gaussians.

As it can be seen, at high densities �rs�3� the ground
state is an unpolarized liquid. In particular for rs�1 the CF
parameter is rather small, and the system has a two-
dimensional character. For rs�5 the ground state is found to
be the spin-polarized, with an energy gap of the order
1 m Ry�. However, the differences in energy between the
polarized liquid �determinant of plane waves� and solid �de-
terminant of Gaussians�, and the unpolarized liquid and solid
are even smaller. This tiny difference ��0.1 m Ry�� might
be taken as a conservative estimate of the fixed-node error,
suggesting that the energy gap between the polarized and
unpolarized phases is robust with respect to changes in the
nodal structure. However, it is not possible within our current
numerical accuracy to draw a definite conclusion about the
relative quality of the two nodal structures.

In Fig. 1 we report the computed energies, together with
the fit of the total energy according to the Tanatar-Ceperley38

functional in the range of 2D densities corresponding to an
estimate of the electron density of the wire. As it can be seen,
at low values of rs, the energy of the electrons in the wire
becomes closer and closer to that of the equivalent homoge-
neous 2D system. The discrepancies are due to the approxi-
mate way in which the width of the wire is determined. On
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the other hand, the figure clearly displays that in the high-rs

regime the energies of the four phases considered strongly
deviates from the 2D value, and tend to collapse on a single
value, consistently with the fact that we are approaching an
effective 1D regime �CF→��.

A problem occurring in QMC simulations of quasi-1D
systems is the lack of ergodicity due to the extremely low
exchange rate between electrons.30 We tried to assess the
existence of this drawback in our 2D simulations. This was
achieved both by direct inspection, i.e., by checking the dif-
fusion of close pairs of electrons, and looking at the Monte
Carlo mean-square diffusion of the electrons along the wire,
estimated by


��x − x0�2�� =
1

NM
�
j=1

M

�
i=1

N

�x j,i��� − x0,i	2, �5�

where xi�0� and xi��� �with �=M��, where �� is the time
step used in the DMC simulation, ��=0.001, and M
=175000� are the x coordinate of the initial and final posi-
tions of the electron i after j DMC steps.

In Fig. 2 we report the evaluation of the rms diffusion �in
units of a0

�� as a function of rs for the four phases considered.
For rs�2 the diffusion of electrons is very active. The de-
pendence on rs �almost linear for the unpolarized liquid
phase� is given by the increased size of the wire in the lon-

TABLE I. Total energy per electron �in Rydberg� for a laterally confined two-dimensional electron gas. �a�
unpolarized liquid wave function, �b� localized wave function, �c� polarized liquid wave function, and �d�
polarized solid wave function. � ��: N=74.

N, rs 0.5 1 2 3 5 7

50 �a� −0.095596�6�
74 �a� −0.5288�4� −0.36810�5� −0.26760�3� −0.19458�3� −0.09549�1� −0.026681�7�
98 �a� −0.5513�4� −0.36800�8� −0.26750�3� −0.19453�2� −0.09544�1� −0.026791�7�
50 �b� −0.09647�1�
74 �b� −0.4163�6� −0.26527�3� −0.19465�1� −0.096476�8� −0.027629�5�
98 �b� −0.3979�8� −0.26518�3� −0.19460�1� −0.096491�7� −0.027634�5�
49 �c� −0.09787�1�
73 �c� −0.0424�4� −0.20522�5�� −0.21482�1� −0.19067�1� −0.097797�6� −0.028524�4�
97 �c� −0.0443�4� −0.20697�8� −0.21524�1� −0.19077�1� −0.097695�6� −0.028500�4�
49 �d� −0.09772�1�
73 �d� −0.18999�1� −0.097671�6� −0.028423�6�
97 �d� −0.19000�1� −0.097673�5� −0.028405�4�
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FIG. 1. �Color online� Total energy per electron �in Rydberg� for
a laterally confined two-dimensional �2D� electron gas. Dots: unpo-
larized fluid; triangles: unpolarized crystal; squares: polarized fluid;
diamonds: polarized crystal. The full line is the energy of the 2D
system at a value of rs

2D estimated from the width of the lateral
density of electrons.
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FIG. 2. �Color online� QMC rms diffusion of the electrons in the
wire as a function of rs �in units of a0

��. The points display the
computed diffusion for the unpolarized liquid �dots�, polarized liq-
uid �squares�, localized �triangles� and polarized solid �diamonds�
phases. For small values of rs the linear growth indicates a diffusion
throughout the simulation box. For larger values of rs the diffusion
is increasingly suppressed, as displayed by the decreasing trend of
the curves for all the phases considered.
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gitudinal direction. This is a clear sign of the fact that elec-
trons are allowed to almost freely diffuse for the whole
length of the wire. For rs�3 the diffusion ceases to increase.
When using localized orbitals, it is clear how the diffusion
converges to a constant value much lower than the values
seen in the liquid phase, indicating that electrons remain
strongly localized around lattice sites.

In Fig. 3 we report the transverse electron density for two
different values of rs and the transverse jellium density. The
picture shows how the system becomes effectively narrower
with increasing rs. For rs=0.5 the system is almost two-
dimensional, in agreement with the fact that the energy of the
confined system approaches the energy of the 2D system. For
lower densities, the effect of the confinement on the energy
becomes stronger and stronger.

In Fig. 4 we report the pair-correlation function projected
along the longitudinal coordinate, g�x�, at rs=5 computed
using the polarized liquid and the localized wave function.
The polarized solid-wave function shows the expected oscil-
lations due to the presence of the Gaussians in the Slater
determinant. However, it is interesting to notice that the g�x�
computed with the polarized liquid wave function �i.e., with
plane waves in the longitudinal direction� shows slowly de-

caying oscillations. The shape of these g�x� suggest that the
system tends to form a Wigner crystal even when the wave
function does not contain an explicit symmetry-breaking
term.

V. CONCLUSIONS

We performed a quantum Monte Carlo simulation of a
laterally-confined electron gas. In this model, contrarily to
quasi-1D models, we can study the occurrence of phase tran-
sitions relevant for understanding the anomalies observed in
the conductance of quantum nanowires. The occurrence of a
polarized and localized phase for rs�3 suggests that in that
limit the conductance of the wire might well be different
from the expected value 2e2 /h. For rs�3 the ground state is
an unpolarized liquid, that, due to the occupation of higher
harmonic-oscillator bands, quickly displays a 2D character.
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